Geometry of subalgebras and inseparable extensions
نویسندگان
چکیده
منابع مشابه
Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable
Follow up what we will offer in this article about pythagorean hodograph curves algebra and geometry inseparable. You know really that this book is coming as the best seller book today. So, when you are really a good reader or you're fans of the author, it does will be funny if you don't have this book. It means that you have to get this book. For you who are starting to learn about something n...
متن کاملextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولUnruffled Extensions and Flatness over Central Subalgebras
A condition on an affine central subalgebra Z of a noetherian algebra A of finite GelfandKirillov dimension, which we call here unruffledness, is shown to be equivalent in some circumstances to the flatness of A as a Z-module. Unruffledness was studied by Borho and Joseph in work on enveloping algebras of complex semisimple Lie algebras, and we discuss applications of our result to enveloping a...
متن کاملHopf Galois structures on primitive purely inseparable extensions
Let L/K be a primitive purely inseparable extension of fields of characteristic p, [L : K] > p, p odd. It is well known that L/K is Hopf Galois for some Hopf algebra H, and it is suspected that L/K is Hopf Galois for numerous choices of H. We construct a family of K-Hopf algebras H for which L is an H-Galois object. For some choices of K we will exhibit an infinite number of such H. We provide ...
متن کاملQuantum Geometry of Field Extensions
We show that noncommutative differential forms on k[x], k a field, are of the form Ω1 = kλ[x] where kλ ⊇ k is a field extension. We compute the case C ⊃ R explicitly, where Ω1 is 2-dimensional. We study the induced quantum de Rahm complex Ω and its cohomology associated to a field extension, as well as gauge theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1981
ISSN: 0021-8693
DOI: 10.1016/0021-8693(81)90311-2